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A hybrid "nite element analysis (hybrid FEA) is employed for investigating power #ow
characteristics for systems of co-linear beams in the mid-frequency range. The importance of
capturing power re-injection and power re-radiation e!ects in the solution is demonstrated.
The dependency of the power #ow characteristics of a system in the mid-frequency range on
the rigidity, mass, and damping properties of its components is determined. Both the hybrid
FEA and analytical solutions are employed for analyses in order to establish the viability of
the hybrid FEA as a simulation technology in the mid-frequency range. Results from
a high-frequency method are compared to hybrid FEA solutions in order to demonstrate the
importance of capturing the resonant e!ects in mid-frequency computations.
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1. INTRODUCTION

The frequency spectrum where simulation methods can be utilized for vibration analysis
can be divided into three regions: low-, mid-, and high frequency. The low-frequency region
is de"ned as the frequency range where all components contain a small number of
wavelengths (short members). Due to the relative large size of the wavelengths with respect
to the size of each component, small uncertainties in the properties of the short members
will not impact their distinctly resonant behavior. By taking into account the de"nition of
the modal overlap as the resonance bandwidth divided by the average frequency spacing
between resonance frequencies it is expected that short members will have low modal
overlap values due to their resonant behavior. The short members are expected to be lightly
damped, since high damping will increase the resonance bandwidth, reduce the resonance
characteristics, and increase the modal overlap. Conventional "nite element analysis (FEA)
is a practical numerical approach for simulating low-frequency vibrations [1}3].

The high-frequency region is de"ned as the frequency range where all component
members of a system are long with respect to a wavelength (long members). Due to the
relative small size of the wavelengths with respect to the size of each component small
uncertainties in the properties of the long members lead to behavior that can be represented
as incoherent. Long members are expected to exhibit considerably higher modal overlap
than the short members, since resonant e!ect are not present. Statistical energy
analysis (SEA) [4}8], and energy "nite element analysis (EFEA) [9}16] can be used
for vibro-acoustic simulations at high frequencies. Both SEA and EFEA provide
0022-460X/01/180445#29 $35.00/0 ( 2001 Academic Press
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meaningful results for the ensemble average response of each member and of the
system. The two methods represent a modal (SEA) and a wave approach (EFEA)
for addressing high-frequency analysis. Extensive discussion of the similarities between
the two methods and correlation results for complex marine structures have been
presented [16].

The mid-frequency region is de"ned as the frequency range where some members in
a system are long while other members are short. In the mid-frequency range the FEA
method requires a prohibiting large number of elements to perform an analysis due to the
presence of the long members. In addition, high computational resources are required in
order to produce frequency-averaged FEA results that constitute a meaningful
representation of the ensemble-average response of a system with uncertainty. The energy
methods (SEA and EFEA) contain assumptions that are valid when all components of
a system are long. Based on the assumption of high modal overlap, the SEA formulation
considers the normal modes within a frequency band as equally probable, containing the
same amount of energy, and demonstrating an equal amount of damping [4]. The
assumption of a small wavelength with respect to the dimension of a member in the EFEA is
similar to the assumption of high modal overlap in SEA. The requirement for small
wavelength in the EFEA allows to neglect the near-"eld e!ects in the wave solution and
allows to consider a reverberant behavior for all the members in a system during the
development of the governing di!erential equations [10}12]. Thus, the energy methods
cannot capture the resonant e!ects in the behavior of a system in the mid-frequencies. The
resonant e!ects are generated from the presence of the short members.

In the energy methods the amount of power transferred between members at a joint is
estimated in terms of coupling loss factors (in SEA) or power transfer coe$cients (in EFEA).
The value of the coupling loss factors or the power transfer coe$cients are computed from
analytical solutions of semi-in"nite members [17]. The computations are meaningful when
the connected members are long, thus the power transfer characteristics of the long
members can be considered the same with the power transfer characteristics of the
semi-in"nite members. The requirement for high modal overlap is necessary because the
information produced by the analytical solutions of the semi-in"nite members captures the
exchange of power #ow between members when there is an equal amount of coupling
between the normal modes of the members. If large di!erences exist in the power #ow due to
the distinct resonant behavior of the short members, then the power transfer characteristics
cannot be estimated properly from analytical solutions of semi-in"nite members.

The basic theoretical formulation of the hybrid FEA employed in this paper for
mid-frequency computations has been presented previously [18]. The hybrid FEA is based
on coupling conventional FEA models of short members to EFEA models of long members.
The joints between long and short members are modelled by combining analytical solutions
of semi-in"nite members that represent the long members to FEA numerical models for the
short members. Two sets of data are produced from the coupling process. The "rst set is
comprised of power transfer coe$cients for each EFEA member at a joint with a short
member. The computed power transfer coe$cients contain information for the resonant
behavior of the short members and the damping that can be present in the short members.
The second set of data is comprised of relationships between the primary variables of the
EFEA model and the primary variables of the FEA model at a joint between long and short
members. A major advantage o!ered from the wave-based formulation of the EFEA is the
distinction between the energy (and the power) associated with waves travelling towards
and away from a joint. At a joint between a long and a short member only the energy
associated with the impinging wave contributes to the excitation of the short member. Thus,
when multiple members are connected together, e!ects of strong coupling, power
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re-injection [19, 21], indirect power #ow [20], and power re-radiation [19, 21] can be
captured correctly by the hybrid "nite element solution.

The scope of this paper is to utilize the simulation capabilities of the hybrid FEA in order
to investigate power #ow characteristics for a system of three co-linear beams in the
mid-frequency range. The system is comprised of two long beams connected by a short one.
The e!ect of the combined sti!ness and damping characteristics of the coupled short
member on the power #ow is identi"ed. Power #ow concepts that have been demonstrated
in the past by systems of oscillators or by analytical solutions of two continuous subsystems
[19}23] are also investigated by the hybrid FEA. Speci"cally, the following power #ow
concepts are presented

(1) Power re-injection [19, 21] and power re-radiation [19, 21] e!ects are present in the
hybrid FEA solution.

(2) The amount of power transferred between long members is strongly a!ected by the
coupling damping and coupling rigidity exhibited by the short member.

(3) The power #ow between long members can be controlled by properly selecting the
#exural and damping characteristics of the short member.

(4) The power transferred between the two long members depends on the relative
bending rigidity exhibited by the two long members and the coupling damping ratio
between short and long members.

The theoretical background of the hybrid FEA is reviewed "rst. The speci"c power #ow
variables that are required as output by the analyses presented in this paper are derived
from the primary variables of the FEA formulation of the short members. Results from
hybrid FEA simulations and from analytical solutions are presented for all the analyzed
systems in order to investigate the outlined power #ow concepts and further validate the
hybrid FEA method. EFEA results are also compared to hybrid FEA solutions in order to
demonstrate the de"ciency of a high-frequency method in performing mid-frequency
computations when resonant e!ects are important.

2. BACKGROUND ON THE HYBRID FINITE ELEMENT ANALYSIS

The primary concept of the hybrid "nite element formulation is to utilize low-frequency
FEA models for deriving energy information for the short members, and to integrate them
with EFEA models representing the long members. Due to the presence of the long
members in the system, the response of the all members will remain incoherent inasmuch as
the short members will be subjected to an incoherent excitation at the points where they are
connected to the long members. Previous work has demonstrated how low-frequency
vibro-acoustic models can be analyzed when they are subjected to incoherent excitation
[24]. The EFEA is selected to be coupled with the low-frequency method because it
constitutes a wave approach for high-frequency solutions and it is based on a spatial
discretization of the system that is being modelled. Thus, it is possible to develop
appropriate interface conditions at the joints between the primary variables of the EFEA
formulation and the primary variables of the FEA formulation since both can be associated
with displacement properties at the joints.

In EFEA the energy density is space-averaged over a wavelength and time-averaged over
a period. The space- and time-averaged energy density constitutes the primary variable of
the formulation [9}15]. The governing di!erential equation associated with one of the
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bending degrees of freedom in a beam is
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formulation, MQeN
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and short members.
In EFEA at positions where di!erent members are connected the energy density is

discontinuous. The corresponding boundary between the elements de"nes a joint location.
Therefore, during the assembly of the global system the element matrices do not couple, and
the values of the internal power #ow at the common node do not overlap to cancel each
other. Instead, they remain as variables on the right-hand side of the equation
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A special procedure is used for assembling the element matrix into the global matrix
equations [25]. A specialized joint element equation is developed to formulate the
connection between the discontinuous primary variables at the joint. The values of the
power #ow at the inter-element nodes corresponding to the two adjacent elements are
expressed in terms of the corresponding energy densities [25]:
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where subscript &&c'' indicates the common node between elements &&i '' and &&j '', and [J]i
j
is

the joint matrix expressing the mechanism of power transfer between elements &&i '' and &&j ''.
The coe$cients of the joint matrix are computed by utilizing power transfer coe$cients
derived from analytical solution of semi-in"nite members fully connected to each other, and
by taking into account the continuity of the power #ow across the joint. Introducing
equation (4) into equation (3) results in
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where [JC]i
j

is the joint matrix comprising the coe$cients of [J]i
j

positioned in the
appropriate locations.

In the mid-frequency range, a system is comprised of both long and short members.
A hybrid FEA formulation has been presented for mid-frequency computations when the
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external excitation is applied on long members of the system [18]. The FEA model of
a short member is coupled with analytical solutions of semi-in"nite members in order to
formulate a hybrid joint. Power transfer coe$cients and relationships between EFEA and
FEA primary variables are computed by the hybrid joint formulation. By considering
a wave incident to the joint from the left semi-in"nite member, the continuity conditions for
the displacement and the slope, and the equilibrium of force and moment at the joints,
a system of equations between the primary variables of the FEA formulation at the joint
and the coe$cients of the semi-in"nite members associated with the re#ected and
transmitted waves is developed [18]:
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where superscript &&m'' is associated with the incident wave from the left member; subscripts
&&m'' and &&n'' indicate the left and right semi-in"nite members respectively, A is the amplitude
of the far "eld right-travelling wave, B the amplitude of the near "eld right-travelling wave,
C the amplitude of the far"eld left-travelling wave, D the amplitude of the near "eld
left-travelling wave, k the wave number, EI the bending rigidity, S

ij
the entries of the FEA

matrix of the short member condensed to the four interface degrees of freedom with the long
members, u

m
, u

n
the displacements at the left and right ends of the short beam, respectively,

du
m
/dx, du

n
/dx are the slopes at the left and right ends of the short beam respectively.

Equation (6) is utilized to derive power transfer coe$cients for long members that are
connected through a short member and for relationships between the primary variables of
the EFEA and FEA formulations at the joints between long and short members. An
equation similar to equation (6) can be developed when considering an incident wave from
the right semi-in"nite member.

By solving the system of equation (6), each one of the eight unknowns can be expressed in
terms of the coe$cient Am

m
, which is associated with the impinging wave:
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The power transmission coe$cient q
mn

is the ratio of the transmitted power over the
incident power. The power re#ection coe$cient r

mm
is the ratio of the re#ected power over

the incident power. Without loss of generality the coe$cient of the impinging wave Am
m

can
be considered as a real and positive number. Hence, the power transfer coe$cient q

mn
for the
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right member &&n'' due to the incident wave in the left member &&m'' is

q
mn
"

qm
tran
qm
inc

"

(EI)
n
k3
n
u D Am

n
D2

(EI)
m

k3
m
u DAm

m
D2
"

(EI)
n
k3
n
DAm

n
D2

(EI)
m
k3
m
D Am

m
D2
"

(EI)
n
k3
n

(EI)
m
k3
m

D am
7
D2. (8)

The re#ection coe$cient r
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in the left member &&m'' due to the incident wave in the same
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The derivation of the EFEA power transfer coe$cients accounts for the resonant and
damping characteristics of the short member. The constants am

5
and am

7
that are directly

associated with r
mm

and q
mn

, respectively, are computed from the solution to equation (6)
which includes all the characteristics of the FEA matrix of the short member condensed to
the interface degrees of freedom at the joint. By considering an incident wave originating
from the right semi-in"nite member, equation similar to equations (8) and (9) can be derived
for the power transfer coe$cients q

nm
and r

nn
.

When two long members are connected by a short member, the energy density at the edge
of the left member at the joint depends on the right travelling wave and its re#ection, but at
the same time it depends on the amount of power transmitted from the other long member.
Thus, the energy density e

m
at the connection of the left long member to the short member

can be written as
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where c
gm

is the group speed of the left member and c
gn

the group speed of the right member.
In a similar manner the energy density at the connection of the right long member with the
short member can be written as
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Combining equations (10) and (11) in matrix from results in
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The values for e
m

and e
n
are computed by the EFEA analysis for the long members. In the

EFEA analysis, the power transfer coe$cients at joints with short members capture the
resonant behavior and the dissipation occurring in the short members. The values for e`

m
and e~

n
are computed by equation (12), and they are utilized to prescribe the excitation on

the short member. Only the component of the energy density associated with the wave
impinging on the short member is employed for de"ning the excitation on the short
member. The excitation applied from each long member on the short is considered as
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incoherent because it originates from the reverberant "eld of each long member. The energy
densities e`

m
of the impinging wave from the left semi-in"nite member can be associated with

the amplitude of the wave as
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Equations (7) and (13) are employed for developing relationships between the FEA primary
variables at the two ends of the short member and the amount of energy density associated
with the impinging wave at the joint,
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The relative phase information within the short member is retained in the computations
because the constants am

i
have complex values. In a similar manner, by considering the

impinging wave from the right semi-in"nite member, a set of relationships can be developed
between the EFEA energy density associated with the impinging wave at the edge of the
right long member at the joint and the FEA primary variables at the two ends of the short
member.

When the excitation is considered to be applied on long members the global EFEA
system matrix is assembled for all of the long members. The power transfer coe$cients
derived by the hybrid joint formulation between short and long members are employed for
developing the joint matrices [JC]i

j
for long members connected through short ones. The

EFEA system of equations is solved "rst. The distribution of the energy density over all of
the long members is evaluated. Equations (13) and (14) are employed for identifying
appropriate boundary conditions on each short member of the system due to the
distribution of the energy density on the long ones. Each short member is subjected to
incoherent excitation from the presence of a certain amount of energy density at every
interface with a long member. Since the excitations e

m
and e

n
are incoherent, the total

response and the energy density distribution over the short members is evaluated by adding
the responses on an energy basis. The e!ects from power re-injection and power
re-radiation are accounted in the solution because equation (12) includes, in matrix [E],
terms associated with both power re#ected from the joint and power transmitted from the
other long member. The computation of the total response is equivalent to a random
analysis of a linear system subjected to incoherent excitation, i.e., no cross-correlation terms
exist between excitation applied at di!erent positions [24]. This concludes the overview of
the hybrid FEA formulation that is utilized in the investigation of power #ow presented in
this paper.

3. DERIVATION OF ENERGY VARIABLES FOR A SHORT MEMBER

In order to investigate power #ow concepts, energy variables must be computed for both
long and short members. In the hybrid FEA the long members are modelled by the EFEA
and the energy density constitutes the primary variable. Thus, energy variables are readily
available for the long members. The short members are modelled by the conventional FEA
method, therefore, energy variables must be computed from the FEA primary variables of
the short members. The derivation of energy variables from the FEA results and the FEA
shape functions is presented in this section.

The time-averaged energy density for #exural waves in a beam is
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where S is the cross-sectional area, o the density, and ;"u(x) eiut the harmonic
displacement solution. The products of equation (15) can be expressed in terms of only the
space-dependent displacement solution:
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The equation for the energy density can be simpli"ed further as
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In FEA the displacement function for a beam element can be expressed in terms of the
primary variables at the nodes (u

1
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/dx) and in terms of the shape functions

(N1, N2, N3, N4). Therefore, the second derivative of the displacement can also be expressed
in terms of the nodal variables and the second derivatives of the shape functions with
respect to space.

The energy density can be expressed in terms of the shape functions, derivatives of the
shape functions, and the FEA primary variables at the nodes,
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Therefore, the energy density can be evaluated at any point of the short members.
In order to demonstrate that the energy density calculations based on FEA results

provide the correct energy values for a short number, a single beam is analyzed by FEA and
the energy density solutions are compared between analytical solutions and FEA results.
The one-beam system (Figure 1) has free}free boundary conditions and is subjected to
a point force excitation at the left end. The properties of the beam are the same as the
properties of the short member listed in Table 2. The energy density solutions computed by
analytical and FEA methods are presented in Figure 2. The short beam is comprised of 40
"nite elements. The analytical and FEA solutions correlate well with each other.
Figure 1. Single-beam system.



Figure 2. Analytical and FEA results for energy density in single-beam system: **, analytical; , FEA.

Figure 3. Three-beam assembly in system A.

Figure 4. Three-beam assembly in system B.
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4. INVESTIGATION OF POWER FLOW

A system of three co-linear beams is utilized in all the power #ow investigations. The
middle beam always constitutes a short member while the other two are long members. The
#exural and damping properties and the dimensions of the beams vary depending on the
power #ow concept that is investigated. Figures 3}6 present all the con"gurations employed
in the analyses and Tables 1}5 summarize the properties of the members in the di!erent
systems. Analytical solutions that assign a 4% uncertainty [26] in the dimensions of the



Figure 5. Three-beam assembly in system C.

Figure 6. Three-beams assembly utilized in systems D}F.

TABLE 1

Con,gurations of the systems employed in the analyses

Length of members (m) Member 1 Coupling member Member 2

System A 3 0)5 Semi-in"nite
System B Semi-in"nite 0)5 Semi-in"nite
System C Semi-in"nite 0)5 3

Systems D}G 3 0)5 3

TABLE 2

Properties of beams employed in systems A}C

Long member/ Short member
semi-in"nite member

Young's modulus of elasticity E (N/m2) 19)5]1010 19)5]1010
Moment of inertia I (m4) 9)365]10~10 5)853]10~11
Mass density o (kg/m3) 7700 7700
Damping factor g 0)02 (Long members) 0)02

0)0 (Semi-in"nite members)
Cross-sectional area A (m2) 1)935]10~4 0)4839]10~4
Cross-sectional dimensions
width]height (m) 0)0254]0)00762 0)0127]0)00381
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long members are presented along with the hybrid FEA results in order to validate the
computations. The following power #ow concepts are investigated: (1) power re-injection;
(2) power re-radiation; (3) e!ects of the coupling damping on the power transferred between
long members; (4) e!ects of the coupling rigidity on the power transferred between long
members; (5) control of power #ow between long members by appropriate selection of



TABLE 3

Properties of beams employed in system D

Long member Short member

Young's modulus of elasticity E (N/m2) 19)5]1010 19)5]1010
Moment of inertia I (m4) 9)365]10~10 5)853]10~11
Mass density o (kg/m3) 7700 7700
Damping factor g 0)02 0)0}0)5
Cross-sectional area A (m2) 1)935]10~4 0)4839]10~4
Cross-sectional dimensions
width]height (m) 0)0254]0)00762 0)0127]0)00381

TABLE 4

Properties of beams employed in system E

Long member Short member

Young's modulus of elasticity E (N/m2) 19)5]1010 19)5]1010
Moment of inertia I (m4) 9)365]10~10 4)741]10~13 }

6)145]10~10
Mass density o (kg/m3) 7700 7700
Damping factor g 0)02 0)02
Cross-sectional area A (m2) 1)935]10~4 4)355]10~6

1)568]10~4
Cross-sectional dimensions 0)0254]0)00762 0)0038]0)00114 }
width]height (m) 0)0229]0)0069

TABLE 5

Properties of beams employed in system F

Long member Short member

Young's modulus of elasticity E (N/m2) 19)5]1010 19)5]1010
Moment of inertia I (m4) 9)365]10~10 1)405]10~11
Mass density o (kg/m3) 7700 7700
Damping factor g 0)02 0)05
Cross-sectional area A (m2) 1)935]10~4 0)2371]10~4
Cross-sectional dimensions
width]height (m) 0)0254]0)00762 0)0089]0)0027
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coupling damping and coupling rigidity for the short member; (6) sensitivity of the power
transferred between long members with respect to the coupling damping ratio and the
relative rigidity exhibited by the long members.

4.1. POWER RE-INJECTION

The phenomenon of power re-injection occurs at a joint between a "nite source member
and a receiving member. Power re#ected from the joint back into the "nite source member
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is later incident upon the joint and eventually partly transmitted to the receiving member.
In references [19, 21] an analytical solution for two continuous one-dimensional
subsystems was utilized to demonstrate that the power #ow per unit power input from
a "nite to an in"nite subsystem is always greater than that between two in"nite subsystems
due to the re-injection of power by the "nite source subsystem. The hybrid FEA can account
for power re-injection e!ects since it is a wave-based formulation and the excitation applied
on a short member depends only on the waves impinging from the adjacent long members
[Equation (12)}(14)]. In order to demonstrate the presence of the power re-injection e!ect in
the hybrid FEA solution two systems are analyzed. System A is comprised of a long member
coupled to a semi-in"nite member through a short member (Figure 3). System B is
comprised of two semi-in"nite members coupled through a short member (Figure 4). No
damping is applied to the two semi-in"nite members and a nominal damping of g"0)02 is
applied to the short member. The hybrid FEA and an analytical solution are utilized for
modelling system A while an analytical solution only is employed for modelling system B.
The properties of the two systems are summarized in Tables 1 and 2. The bending rigidity is
the same for all long and semi-in"nite members in systems A and B, and the same short
member is utilized in systems A and B.

Input power is applied as excitation at the left end of the left long member of system A.
A right-travelling wave de"nes the excitation on the left semi-in"nite member of system B.
In order to perform a proper comparison, the external input power into system A is equal to
the power of the right-travelling wave in the left semi-in"nite member of system B.
Calculations are performed in the frequency range of 200}1000 Hz. In the selected
frequency range the long and the short member of system A contain more than six and less
than six wavelengths, respectively, while uncertainty e!ects are only considered for the long
members. The results for the normalized power #ow per unit of input power from the left
long member to the short member in system A, and the normalized power #ow per unit of
input power from the left semi-in"nite member to the short member in system B are
presented in Figure 7. The power #ow is computed at the joint between the left long member
and the short member in system A and at the joint between the left semi-in"nite member
and the short member in a system B. The time-averaged power #ow for #exural waves in
a beam is

SqT"
EI

2
Re GA

L3;

Lx3BA
L;
Lt B

*
#A

L2;

Lx2BA!
L2;

Lx LtB
*

H . (20)

Both the hybrid and the analytical solutions are presented for system A. In the hybrid FEA
solution the semi-in"nite receiving member of system A is modelled by a very long "nite
member (300 m) with very high damping (g"0)9) in order to eliminate possible power
re#ection from the edge of the receiving member. In the analytical solution for system A the
receiving member is modelled as semi-in"nite and no re#ection occurs. As expected, power
is re-injected back towards the joint when the length of the source member is "nite, and the
power #ow towards the short member is higher compared to the power #ow when the
source member is semi-in"nite. In system A, almost the entire part of the input power (other
than the amount dissipated in the "nite left long member) is transferred to the receiving
semi-in"nite member. Thus, the normalized power #ow per unit of input power is very close
to unit. The di!erences between systems A and B are ampli"ed at frequencies where the
power #ow associated with the re#ected wave presents peaks. Then, the power transferred
to the receiving long member is signi"cantly higher in system A compared to system B due
to the power re-injection e!ect. The hybrid FEA and the analytical results for system
A correlate very well over the entire frequency range of analysis.



Figure 7. Ratio of power transferred to the receiving semi-in"nite member over the input power for simulations
demonstrating power re-injection e!ects: , analytical system A; *L**, hybrid system A; } } } , analytical
system B.
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4.2. POWER RE-RADIATION

Power re-radiation occurs when some of the power radiated to a "nite receiving member
is re-radiated back to the source member. In references [19, 21] an analytical wave solution
for power #ow between two continuous one-dimensional subsystems was used to
investigate the phenomenon of power re-radiation. It was demonstrated that the power #ow
per unit of external input power from a semi-in"nite to a "nite subsystem is always smaller
than the power #ow between two semi-in"nite subsystems due to the power re-radiated
back to the source semi-in"nite member by the "nite receiving member. The power
re-radiation phenomenon is accounted in the hybrid FEA. In order to demonstrate the
e!ect of power re-radiation, analyses are performed on two systems. System C is comprised
of a semi-in"nite member coupled with a long "nite member through a short member
(Figure 5). System B is the one utilized in the previous section. The hybrid FEA and an
analytical solution are employed for analyzing system C. In the hybrid solution the
semi-in"nite source member of system C is modelled by a very long "nite member (300m).
High damping (g"0)9) is assigned to the "rst 297 m of the source member and nominal
damping (g"0)02) is assigned to the 3m closest to the joint with the short member. The
external input power is applied at the point where the damping changes values. The power
of the impinging wave from the source member to the joint with the short member in system
C is retained equal with the power of the right travelling wave in the source semi-in"nite
member of system B. Thus, the power impinging from the source member to the short
member is the same for both system. In the analytical solution for system C the source
member is modelled as semi-in"nite with no damping, and the input power is speci"ed
similar to system B. An analytical solution computes the response of system B. No damping
is de"ned on the semi-in"nite members and nominal damping (g"0)02) is de"ned for the



Figure 8. Ratio of power transferred to the receiving member over the incident power for simulations demon-
strating power re-radiation e!ects: , analytical system C;*L**, hybrid system C; } } } , analytical system B.
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short member. The properties of system C are summarized in Tables 1 and 2. The net
normalized power #ow per unit of incident power from the left semi-in"nite member to the
short member is calculated over the frequency range 200}1000 Hz and the results are
presented in Figure 8. The results for system B are identical with the result presented in
Figure 7, since the con"guration of System B remains the same during the power
re-injection and the power re-radiation analyses. Although the power of the impinging wave
at the joint between the source and the short member is the same for systems B and C, the
net power #ow at the joint is not the same due to the re-radiation phenomenon. The net
power #ow to the short member is always lower in system C than that in system B. The
reason for the lower power #ow exhibited in system C is that power is re-radiated back into
the source member from the right boundary of the "nite receiving long member. In system
B, the receiving long member is a semi-in"nite one, therefore power is not re#ected back
into the source member. The power receiving mechanism in the system B presents higher
capacity than in system C due to the semi-in"nite nature of the receiving long member.
Good correlation can be observed between the hybrid FEA and analytical results over the
frequency range of analysis.

4.3. COUPLING DAMPING

The e!ect of coupling damping is investigated in a system comprised by two long beams
inter-connected by a short one (system D). Excitation is applied at the left end of the left
long member and the e!ect of the structural damping of the short beam to the power
transferred between the two long members is identi"ed. In the past, the power #ow between
two non-conservatively coupled oscillators was studied, and the e!ect of the coupling
damping to the power #ow was determined [22, 23]. In this paper, two continuous long
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members are employed instead of oscillators and the connecting short member comprises
the non-conservative coupling mechanism. The structural damping g of each member
de"nes its dissipation characteristics. A relationship between the damping coe$cient c of
a non-conservative oscillator and the structural damping coe$cient of a continuous
member utilized in this work can be derived as

cu"(EI)g, (21)

where u is the radial frequency, and EI the bending rigidity. This relationship can be
employed for comparing quantitatively outcomes between this work and references [22],
[23]. The properties of system D are listed in Tables 1 and 3. The damping of the coupling
short member is considered as a varying parameter and the energy stored in the beams is
evaluated. The structural damping of the short member g

S
varies from 0)0 to 0)5. The two

long members are considered to demonstrate the same amount of structural damping, equal
to 0)02. By considering resonance with 3 dB bandwidth, the modal overlap can be
computed as [27]

M"

u¸ g
c
B
n

, (22)

where M is the modal overlap, ¸ the length of member, and c
B

the bending wave speed. The
modal overlap for the long members utilized in system D acquires values between 0)3 and
0)34 in the frequency range of analysis. The modal overlap for the short member acquires
values between 0 and 4)012 depending primarily on the value of structural damping and to
a lesser extent on the frequency. The modal overlap for the short member reaches the value
Figure 9. Hybrid results for the total energy in the receiving long member per unit of external input power in
system D:**, g

S
"0)0;*L**, 0)001;*]*, 0)01;*#*, 0)02; , 0)03;*K**, 0)04;*e** , 0)05;*£**, 0)1;

*n**, 0)15; }L} }, 0)2; } }]} }, 0)25; } }#} }, 0)3; , 0)35; }K} }, 0)4; }e} }, 0)5.



Figure 10. Analytical results for total energy in the receiving long member per unit of external input power in
system D:**, g

S
"0)0;*L**, 0)001;*]*, ,0)01;*#*, 0)02; , 0)03;*K**, 0)04;*e**, 0)05;*£**, 0)1;

*n**, 0)15; }L} }, 0)2; } }]} }, 0)25; } }#} }, 0)3; , 0)35; *K**, 0)4; }e} }, 0)5.
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of 0)3, the same as exhibited by the long members, for structural damping of 0)05. Results for
the energy stored in the receiving long member (E

RL
) per unit of external power input are

presented in Figures 9 and 10 from the hybrid FEA and the analytical solutions
respectively. The hybrid FEA can account for the coupling damping since the FEA model of
the coupling short member takes into account the dissipation characteristics of the short
member.

The following characteristics can be observed for the power transferred between the two
long members: (1) overall, the total energy of the receiving long member per unit of external
input power decreases when the coupling damping increases. (2) For high values of coupling
damping there is a progressively smaller in#uence on the energy stored in the receiving long
member. These observations are in agreement with conclusions from references [22, 23].
Good correlation is observed between the hybrid FEA and the analytical results for all
analyses. Both the magnitude of the energy stored in the receiving long member, and e!ects
of the coupling damping on the results are predicted correctly by the hybrid FEA. Figure 11
presents a comparison between hybrid FEA and EFEA results for the energy stored in the
receiving long member per unit of external power input. The EFEA constitutes a typical
high-frequency method and the comparison is presented in order to demonstrate the
bene"ts o!ered by the hybrid FEA. Results are compared for four damping values assigned
to the short member (0)001, 0)02, 0)05, and 0)1). The corresponding ranges for the modal
overlap values of the short member are, respectively, 0)0072}0)008, 0)144}0)16,
0)3597}0)4012, and 0)71}0)8. For the two lower values of structural damping the modal
overlap factor of the short member is signi"cantly lower than the modal overlap of the two
long members, and the di!erences between the hybrid FEA and EFEA results are
signi"cant. For structural damping equal or larger than 0.05 the modal overlap factor of the



Figure 11. Comparison between hybrid FEA and EFEA results for total energy in the receiving long member
per unit of external input power in system D: **, hybrid g

S
"0)001; *L**, hybrid g
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short member becomes of the same magnitude or higher than the modal overlap factor of
the long members and the two solutions start to converge. Di!erences exist between the two
solutions, even for values of modal overlap for the short member between 0.3597 and 0.4012
(g"0.05), since the mid-frequency e!ects are a combination of the modal overlap factor
and the relative magnitude between the dimension of a member and the corresponding
wavelength. Although higher damping increases the modal overlap factor of the short
member, the relative long wavelength with respect to the dimension of the short member
allows the system to retain resonant characteristics. As the damping of the short member
increases further, these resonant characteristics diminish, and the two solutions converge.

In the system of the two non-conservatively coupled oscillators it was identi"ed that the
progressively smaller in#uence of the coupling damping on the energy of the receiving
oscillator occurs when the coupling damping exceeds the damping of the oscillators
[22, 23]. In order to compare this observation with the current results, equivalent damping
coe$cients for the beams of system D are evaluated from equation (2). The e!ect of coupling
damping on reducing the energy level of the receiving member is expected to become
progressively smaller when the damping coe$cient of the short member c

s
exceeds the

maximum damping coe$cient of the long members (c
S
'max (c

SL
, c

RL
)). Subscripts &&S'',

&&S¸'', and &&R¸'' indicate, respectively the short, the source long, and the receiving long
members (Figure 12). By taking into account the bending rigidity of the members and their
structural damping, the corresponding relationship between the structural damping factors
of the members in g

S
'16 max (g

SL
, g

RL
). The progressively smaller e!ect of the coupling

damping in the reduction of the energy level in the indirectly driven long member is
expected to appear when g

S
exceeds the value of 0)32. In order to investigate the



Figure 12. Reduction in the energy of the receiving long member with respect to the coupling damping;**,
Frequency"460 Hz; *L**, 474 Hz; *]*, 488 Hz; *#*, 502 Hz; , 516 Hz; *K**, 530 Hz; *e**,
544 Hz; *£**, 558 Hz.
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progressively smaller in#uence of the coupling damping on the energy of the receiving
member, the ratio of the change in the energy of the receiving member over the change in the
coupling damping is plotted in a logarithmic scale with respect to the coupling damping
value. It can be observed, that the decline in the curve becomes steeper for damping values
of log

10
(g

S
) equal to !0)6 (g

S
"0)25) and higher. The steep decline in the curve indicates

that the energy stored in the receiving long member is in#uenced minimally by the increase
of the coupling damping. Thus, the trend remains similar to the observations made in
references [22], [23].

Overall, the total energy in the receiving long member per unit of external input power
decreases when the coupling damping increases. The coupling damping provides
a dissipation mechanism for the system. Due to the resonant characteristics of the short
member, power is dissipated before it is transferred to the receiving long member. Therefore,
the amount of coupling damping impacts the power #ow between the long members and the
amount of energy stored in the indirectly driven long member. The hybrid FEA can be
utilized in the mid-frequency range for determining the impact of the coupling damping in
the isolation of the receiving member.

4.4. COUPLING RIGIDITY

The bending rigidity of the coupling short member in system D is considered as
a parameter in order to investigate the e!ect of the coupling rigidity on the power #ow of
the system in the mid-frequency range. The short member exhibits resonant behavior in the
mid-frequency range. Therefore, the energy stored in the short member per unit of external
input power will become maximum for the value of coupling bending rigidity that



POWER FLOW FOR BEAM SYSTEMS 463
introduces a resonance in the short member in the frequency range of analysis. The coupling
rigidity of the short member is modi"ed by varying the dimensions of the cross-section. The
width and the height of the cross-section of the short member are modi"ed simultaneously
by the same percentage of the baseline value. The beam system that includes the
modi"cations for the coupling sti!ness is considered as system E. The parameter ratio rd is
de"ned as the ratio between the width or the height of the cross-section with respect to the
corresponding baseline value. The bending rigidity of the short member takes values that
are less, equal, or larger than the baseline bending rigidity of the short member. Analysis is
performed in the frequency range 450}560 Hz. The modal overlap factor for the short
member acquires values between 0)107 and 0)164 for all the combinations of rd and
frequency of analysis. Therefore, the modal overlap value of the short member is
substantially lower from the modal overlap values of the long members for all the
con"gurations. The external power input is retained constant over the entire frequency
range of analysis. The total energy stored in the system is computed "rst. Results from the
hybrid FEA and the analytical computation are presented in Figures 13 and 14 respectively.
The total energy stored in the system is proportional to the input power and it is expected to
decrease with frequency when the input power is constant over the frequency range of
analysis:

SP
diss

T"SQ
in
T"guSE

tot
T, (23)

where SP
diss

T is the time averaged dissipated energy of the system, SQ
in
T the time-averaged

input power into the system, SE
tot

T the time-averaged total energy in the system. From
equation (23), the value of SE

tot
T/SQ

in
T can be de"ned,
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T
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T
"
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. (24)
Figure 13. Hybrid results for total energy in system E per unit of external input power:**, rd"0)3;*L**,
0)4;*]*, 0)5;*#*, 0)6; , 0)7;*K**, 0)8;*e**, 0)9;*£**, 1)0;*n**, 1)4; } }L}} } }, 1)8; } }]} }, 1/gu.



Figure 14. Analytical results for total energy in system E per unit of external input power: **, rd"0)3;
*L**, 0)4; *]*, 0)5; *#*, 0)6; , 0)7; *K**, 0)8; *e**, 0)9; *£**, 1)0; *n**, 1)4; *L**, 1)8;

, 1/gu.
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The curve (1/gu) is plotted along with the hybrid FEA and the analytical results in Figures
13 and 14 respectively. It can be observed that conservation of energy is preserved in the
hybrid FEA solution since the results for the total energy in the system agree well with the
expected value derived from equation (24). The relationship between the stored and the
dissipated energy de"ned by equation (23) is embedded in the hybrid FEA formulation. In
the analytical solution the damping mechanism is introduced through a complex wave
number. Therefore, equation (24) demonstrates better agreement with the hybrid FEA
solution rather than the analytical results. As expected, the hybrid FEA and the analytical
results for the total energy of the system per unit of external input power do not depend on
the values of coupling rigidity. The total energy stored in the entire system strictly depends
on the input power and the structural damping. Similar values and the same behavior is
predicted in the results by both the hybrid FEA and the analytical solution.

The total energy stored in the short member is computed for di!erent values of bending
rigidity exhibited by the short member. Results computed by the hybrid FEA and an
analytical solution are presented in Figures 15 and 16 respectively. The ratio parameter rd
varies from 0)3 to 1)8. The largest amount of energy stored in the short member per unit of
input power over the frequency range of analysis is exhibited for rd"0)7. This information
will be employed in the next section in order to control the amount of power #ow towards
the receiving long member. A resonant behavior in the short member is also observed for
rd"0)5. The hybrid FEA and the analytical results present good agreement. The total
energy in the receiving long member per unit of external power input is computed. Results
are presented in Figures 17 and 18 from the hybrid FEA and the analytical computations
respectively. The amount of energy stored in the receiving long member varies signi"cantly
with respect to the coupling rigidity. The best isolation is o!ered when the coupling rigidity
of the short member becomes very small (i.e., rd"0)3) and the two long members appear



Figure 15. Hybrid results for total energy in the short member per unit of external input power in system E:
**, rd"0)3;*L**, 0)4;*]*, 0)5;*#*, 0)6; , 0)7;*K**, 0)8;*e**, 0)9;*£**, 1)0;*n**, 1)4; }L} },
1)8.

Figure 16. Analytical results for total energy in the short member per unit of external input power in system E:
**, rd"0)3; *L**, 0)4; *]*, 0)5; *#*, 0)6; , 0)7; *K**, 0)8; *e**, 0)9; *£**, 1)0; *n**, 1)4;
*L**, 1)8.
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Figure 17. Hybrid results for total energy in the receiving long member per unit of external input power in
system E:**, rd"0)3;*L**, 0)4;*]*, 0)5;*#*, 0)6; , 0)7;*K**, 0)8;*e**, 0)9;*£**, 1)0;*n**,
1)4; *L**, 1)8.

Figure 18. Analytical results for total energy in the receiving long member per unit of external input power in
system E:**, rd"0)3;*L**, 0)4;*]*, 0)5;*#*, 0)6; , 0)7;*K**, 0)8;*e**, 0)9;*£**, 1)0;*n**,
1)4; *L**, 1)8.
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Figure 19. Hybrid FEA and EFEA results for total energy in the receiving long member per unit of external
input power in system E: **, hybrid rd"0)5; *L**, hybrid rd"0)7; *]*, hybrid, rd"1)0; *#*, EFEA
rd"0.5; , EFEA rd"0)7; *K**, EFEA rd"1)0.
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to be disconnected. Very low values of coupling rigidity may not be acceptable due to
integrity considerations.

The resonant characteristics of the short member for rd"0)5 and 0)7 are also present in
the energy stored in the receiving long member. Good agreement is observed between the
hybrid FEA and the analytical solution. Results from the hybrid FEA and the EFEA are
presented in Figure 19 for three di!erent values of coupling sti!ness (rd"0)5, 0)7 and 1).
Since the modal overlap factor of the short member is substantially lower than the modal
overlap factor of the long members, there is a substantial di!erence between the EFEA
results (that are typical of a high-frequency solution) and the hybrid FEA results. Large
deviations are observed for rd"0)5 and 0)7 since the short member exhibits resonant
behavior for these two values as it has been identi"ed by the results presented in Figures 15
and 16.

4.5. CONTROL OF POWER FLOW BY THE COUPLING MEMBER

As it is identi"ed in the previous two sections, the characteristics of the short member can
impact the power #ow to the receiving long member and the energy distribution in the
system. The coupling damping and the coupling rigidity can be modi"ed simultaneously in
order to control the power #ow to the receiving long member e!ectively. By adjusting the
coupling rigidity of the short member the amount of energy stored in it can be maximized.
Then, a moderate increase in the damping property of the short member will amplify the
amount of dissipated energy. Thus, a lesser amount of external input power will be available
to be transferred to the receiving long member. A moderate increase of structural damping



Figure 20. Analytical, hybrid FEA, and EFEA results for total energy in the receiving long member per unit of
external input power in system F: *K**, hybrid; *e**, analytical; *L**, EFEA.

468 N. VLAHOPOULOS AND X. ZHAO
(0)05 from the baseline value of 0)02) is introduced in the con"guration of coupling rigidity
that exhibits the highest amount of energy stored in the short member (rd"0)7) (system F).
The properties of system F are summarized in Tables 2 and 5. Results computed by the
hybrid FEA, an analytical solution, and the EFEA for the total energy stored in the
receiving long member per unit of external power input are presented in Figure 20. The
hybrid and the analytical results correlate well, while the EFEA cannot capture the
resonant e!ects of the short member and the corresponding dissipation. By comparing the
results in Figure 9 and 20 it can be observed that in order to achieve the same level of
isolation with the baseline coupling sti!ness the coupling damping must be increased to
20%. Also, by comparing Figure 17 and 20 it can be observed that a similar level of isolation
can be achieved for the baseline structure damping only by signi"cantly reducing the
rigidity of the connecting short member. However, such an isolation measure might not be
acceptable if there is a minimum rigidity requirement imposed from structural integrity
considerations. Introducing a combined moderate modi"cation in the coupling rigidity and
the coupling damping can be an e!ective approach for reducing the power #ow towards the
receiving long member. An equivalent level of isolation can be achieved only by radical
individual modi"cation of the coupling sti!ness or the coupling damping. Thus, the
resonant behavior of the short member can be utilized in order to amplify the energy
dissipated in the system and o!ers an isolation mechanism.

4.6. SIMULTANEOUS VARIATION OF COUPLING DAMPING AND RELATIVE RIGIDITY

The previous section addressed the importance of the properties of the coupling short
member to the power #ow through the system. In this section, the e!ects of the relative
rigidity between long members and the e!ects of the relative damping ratio between short



TABLE 6

Properties of beams employed in system G

Member 1 Coupling member Member 2

Young's modulus of
elasticity E (N/m2)

19)5]1010 19)5]1010 19)5]1010

Moment of inertia I (m4) 9)365]10~10 5)853]10~11 4)683]10~10}
2)81]10~9

Mass density o (kg/m3) 7700 7700 7700
Damping factor g 0)02 0)02 0)02
Cross-sectional area A (m2) 1)935]10~4 0)4839]10~4 1)369]10~4 }

3)352]10~4
Cross-sectional dimensions 0)0254]0)00762 0)0127]0)00381 0)0214]0)00641}
width]height (m) 0)0334]0)01

Figure 21. Hybrid results for energy stored in the receiving long member of system G: **, I
RL

/I
SL
"0)5;

*L**, 1)0; *]*, 1)5; } } } , 3)0.
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and long members are investigated. Variations are introduced in system D and hybrid FEA
analyses are performed. The system that incorporates the changes is indicated as system
G and its properties are summarized in Tables 1 and 6. The parameters which are
considered in the analyses are: (1) the relative rigidity between the receiving and the source
long members (I

RL
/I

SL
), (2) the relative damping between the short and the source long

member (g
S
/g

SL
). The rigidity of the receiving long member and the damping of the short

member are the two parameters that vary in the system. The two parameters are modi"ed
simultaneously and the amount of total energy stored in the receiving long member per unit
of external input power is computed (E

RL
/Q

in
). Results from the hybrid FEA and an

analytical solution are presented in Figures 21 and 22 respectively. The variable E
RL

/Q
in

is



Figure 22. Analytical results for energy stored in the receiving long member of system G: **, I
RL

/I
SL
"0)5;

*L**, 1)0; *]*, 1)5; } } } , 3)0.

Figure 23. Hybrid results for relative variation of E
RL

/Q
in

with respect to I
RL

/I
SL

versus g
S
/g

SL
in system G:

**, I
RL

/I
SL
"0)5 and 1)0; *]*, 0)5 and 1)5; }} } , 0)5 and 3)0.
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presented with respect to the relative damping (g
S
/g

SL
) for di!erent values of relative rigidity

(I
RL

/I
SL

). It can be observed (Figures 21 and 22) that the amount of energy stored in the
receiving long member increases when the relative bending rigidity (I

RL
/I

SL
) decreases.

When the receiving member becomes more #exible a larger amount of energy can be stored



Figure 24. Analytical results for relative variation of E
RL

/Q
in

with respect to I
RL

/I
SL

versus g
S
/g

SL
in system G:

**, I
RL

/I
SL
"0)5 and 1)0; *]*, 0)5 and 1)5; }} } , 0)5 and 3)0.
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in it for a constant external input power. A higher amount of energy is stored in more
#exible receiving members regardless of the amount of damping in the connecting short
member. When the damping of the connecting short member increases, a larger amount of
energy is dissipated and a smaller amount of power is transferred to the receiving long
member. Therefore, for larger values of the relative damping ratio the di!erence in the
amount of energy stored in members with di!erent rigidity decreases.

Results for the relative di!erence in the energy of the long members for di!erent values of
bending rigidity are presented in Figures 23 and 24 for the hybrid FEA and an analytical
solution respectively. It can be observed that the relative di!erence in the energy of the
receiving long member is approximately the same for all the values of relative coupling
damping. Therefore, the damping of the short member has the same e!ect on the energy
stored in the receiving long member and on its relative di!erence. Good correlation is
observed between the hybrid FEA results (Figures 21 and 23) and the analytical solution
(Figures 22 and 24) for all the analyses.

5. CONCLUSIONS

The hybrid FEA is employed in order to investigate several power #ow concepts in
systems of co-linear beams in the mid-frequency range. Results from analytical solutions are
also presented and excellent correlation is observed. It is demonstrated that the hybrid FEA
formulation can capture properly the phenomena of power re-injection and power
re-radiation. Highly resonant e!ects that are present in a system in the mid-frequency range
are properly accounted in the hybrid FEA. The coupling rigidity and the coupling damping
of a short member are important for the power #ow through a system. The resonant
characteristics of a short member can be utilized in order to increase the isolation between
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inter-connected long members. The relative rigidity between a receiving and a source long
member has an important e!ect on the amount of energy stored in the receiving member.
The coupling damping a!ects the amount of energy stored in the receiving member, but has
a minimal impact on the relative change in the energy stored in the receiving member.
EFEA results are compared, as representative of a high-frequency solution, to hybrid FEA
results. It is demonstrated that when the resonant e!ects of the short member are important,
large di!erences exist between the EFEA and hybrid FEA results.
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